In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR

نویسندگان

  • Christian N. Koyama
  • Hai Liu
  • Kazunori Takahashi
  • Masanobu Shimada
  • Manabu Watanabe
  • Tseedulam Khuut
  • Motoyuki Sato
چکیده

At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR) probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an improved method for the estimation of vertical soil moisture profiles from multi-offset ground penetrating radar (GPR) data. A semi-automated data acquisition technique allows for very fast and robust measurements in the field. Advanced common mid-point (CMP) processing is applied to obtain quantitative estimates of the permittivity and depth of the reflecting soil layers. The method is validated against TDR measurements using data acquired in different environments. Depth and soil moisture contents of the reflecting layers were estimated with root mean square errors (RMSE) on the order of 5 cm and 1.9 Vol.-%, respectively. Application of the proposed technique for the validation of synthetic aperture radar (SAR) soil moisture estimates is demonstrated based on a case study using airborne L-band data and ground-based P-band data. For the L-band case we found good agreement between the near-surface GPR estimates and extended integral equation model (I2EM) based SAR retrievals, comparable to those obtained by TDR. At the P-band, the GPR based method significantly outperformed the TDR method when using soil moisture estimates at depths below 30 cm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Changes Analysis Of Soil Temperature In Different Depths Under The Influence Of Humidity And Air Temperature (Case Study: Taleghan Watershed)

In this study, to analyze the pattern of soil temperature changes in the depths of  5, 10, 20, 30, 50 and 100 cm under the influence of temperature (minimum, average and maximum) and humidity (minimum, average and maximum) the Pearson and regression methods were used for Taleghaan synoptic station during the period of 2008 to 2016 . The results showed that soil temperature had the highest corre...

متن کامل

Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to f...

متن کامل

Estimation of soil moisture using optical, thermal and radar Remote Sensing )Case Study: South of Tehran(

Traditional methods of field measurement of soil moisture in addition to the difficulty, the need for manpower and money and fail to take place on a large scale to be able to show moisture. Therefore, remote sensing has become a widespread use .Landsat 8 satellite data and Sentinel-1 radar satellite from Tehran were provided. 72 soil samples were taken at the same time by satellite passing from...

متن کامل

روش جدید برآورد پارامترهای هیدرولیکی با اندازه‌گیری رطوبت خاک در مزرعه

In this study, the values of moisture and soil temperature were estimated at different depths and times under unsteady conditions by solving the Richards’ equation in an explicit finite difference method provided in Visual Studio C#. For the estimation of soil hydraulic parameters, including av and nv (coefficients of van Genuchten’s equation) and Ks (saturated hydraulic conductivit...

متن کامل

Determining the importance of soil properties for clay dispersibility using artificial neural network and daptive neuro-fuzzy inference system

The main purpose of the current research is comparing the results of Artificial Neural Network (ANN) with Adaptive Neuro-Fuzzy Inference System (ANFIS) with regard to determination of the importance of soil properties affecting clay dispersibility. After taking samples from two depths of 0-40 and 40-80 cm, the spontaneous and mechanical dispersions of clay were recorded using both weighing and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017